科数网
试题 ID 11119
【所属试卷】
南开大学 2022 年研究生入学考试数学分析试题解答
设 $f(x, y)=x^3-3 x^2 y-y^3+x^2-y$.
(1) 证明: 存在 $\delta>0$, 以及定义于 $(-\delta, \delta)$ 上的连续可微函数 $y=y(x)$, 满足 $y(0)=0$, 以及 $f(x, y(x))=0$.
(2) 证明: $x=0$ 时 (1) 中的 $y(x)$ 取到极小值.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x, y)=x^3-3 x^2 y-y^3+x^2-y$.
(1) 证明: 存在 $\delta>0$, 以及定义于 $(-\delta, \delta)$ 上的连续可微函数 $y=y(x)$, 满足 $y(0)=0$, 以及 $f(x, y(x))=0$.
(2) 证明: $x=0$ 时 (1) 中的 $y(x)$ 取到极小值.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见