科数网
试题 ID 11322
【所属试卷】
2024届高三八校联盟(T8)联考数学试题
已知双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的左、右焦点分别为 $F_1, F_2$, 若过点 $F_2$ 的直线与双曲线的左、右两支分别交于 $A, B$ 两点, 且 $A F_1=B F_1=2 \sqrt{5}$. 又以双曲线的顶点为圆心, 半径为 $2 \sqrt{2}$ 的圆恰好经过双曲线虚轴的端点, 则双曲线的离心率为
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的左、右焦点分别为 $F_1, F_2$, 若过点 $F_2$ 的直线与双曲线的左、右两支分别交于 $A, B$ 两点, 且 $A F_1=B F_1=2 \sqrt{5}$. 又以双曲线的顶点为圆心, 半径为 $2 \sqrt{2}$ 的圆恰好经过双曲线虚轴的端点, 则双曲线的离心率为
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见