科数网
试题 ID 11946
【所属试卷】
矩阵与行列式专项训练
算 $n$ 阶行列式
$$
D_n=\left|\begin{array}{cccc}
1+a_1 & 1 & \cdots & 1 \\
1 & 1+a_2 & \cdots & 1 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 1 & \cdots & 1+a_n
\end{array}\right|
$$其中 $a_1 a_2 \cdots a_n \neq 0$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
算 $n$ 阶行列式
$$
D_n=\left|\begin{array}{cccc}
1+a_1 & 1 & \cdots & 1 \\
1 & 1+a_2 & \cdots & 1 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 1 & \cdots & 1+a_n
\end{array}\right|
$$其中 $a_1 a_2 \cdots a_n \neq 0$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见