• 试题 ID 13286


极限 $\lim _{t \rightarrow 0^{+}} \frac{\int_0^{\frac{\sqrt{2}}{2} t} \mathrm{~d} x \int_x^{\sqrt{t^2-x^2}} \sin \left(x^2+y^2\right) \mathrm{d} y}{t^4}=$
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见