科数网
试题 ID 136
【所属试卷】
2021届安徽省五校联盟第二次联考
已知函数 $f(x)=e^{x}\left(x^{2}+m x+m^{2}\right), g(x)=a x^{2}+x+a x \ln x$.
(1) 若函数 $f(x)$ 在 $x=-1$ 处取极小值, 求实数 $m$ 的值;
(2) 设 $m=0$, 若对任意 $x \in(0,+\infty)$, 不等式 $f(x) \geq g(x)$ 恒成立, 求实数 $a$ 的值.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知函数 $f(x)=e^{x}\left(x^{2}+m x+m^{2}\right), g(x)=a x^{2}+x+a x \ln x$.
(1) 若函数 $f(x)$ 在 $x=-1$ 处取极小值, 求实数 $m$ 的值;
(2) 设 $m=0$, 若对任意 $x \in(0,+\infty)$, 不等式 $f(x) \geq g(x)$ 恒成立, 求实数 $a$ 的值.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见