科数网
试题 ID 14250
【所属试卷】
曲线积分与曲面积分
已知 $f(u, v)=\oint_C\left(u x^2+v y^2\right) \mathrm{d} s$ ,其中曲线 $C: x^2$ $+y^2=u^2$ ,试求 $f_{u v}^{\prime \prime}(1,1)$ 的值.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知 $f(u, v)=\oint_C\left(u x^2+v y^2\right) \mathrm{d} s$ ,其中曲线 $C: x^2$ $+y^2=u^2$ ,试求 $f_{u v}^{\prime \prime}(1,1)$ 的值.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见