科数网
试题 ID 14254
【所属试卷】
曲线积分与曲面积分
已知 $C$ 为不经过原点的简单光滑闭曲线,且取逆时针方向. 计算曲线积分 $\oint_C \frac{y \mathrm{~d} x-x \mathrm{~d} y}{a x^2+b y^2}$ ,其中 $a, b$ 为大于零的常数.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知 $C$ 为不经过原点的简单光滑闭曲线,且取逆时针方向. 计算曲线积分 $\oint_C \frac{y \mathrm{~d} x-x \mathrm{~d} y}{a x^2+b y^2}$ ,其中 $a, b$ 为大于零的常数.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见