科数网
试题 ID 14884
【所属试卷】
1992年全国硕士研究生招生统一考试数学试题及详细参考解答(数三)
设曲线方程为 $y=e^{-x}(x \geq 0)$.
(1) 把曲线 $y=e^{-x} 、 x$ 轴、 $y$ 轴和直线 $x=\xi(\xi>0)$ 所围平面图形绕 $x$ 轴旋转一周得一旋转体,求此旋转体体积 $V(\xi)$ ;并求满足 $V(a)=\frac{1}{2} \lim _{\xi \rightarrow+\infty} V(\xi)$ 的 $a$.
(2) 在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设曲线方程为 $y=e^{-x}(x \geq 0)$.
(1) 把曲线 $y=e^{-x} 、 x$ 轴、 $y$ 轴和直线 $x=\xi(\xi>0)$ 所围平面图形绕 $x$ 轴旋转一周得一旋转体,求此旋转体体积 $V(\xi)$ ;并求满足 $V(a)=\frac{1}{2} \lim _{\xi \rightarrow+\infty} V(\xi)$ 的 $a$.
(2) 在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见