科数网
试题 ID 15433
【所属试卷】
2001年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)
设函数 $f(x) , g(x)$ 满足,
$$
f^{\prime}(x)=g(x) , g^{\prime}(x)=2 e^x-f(x),
$$
且 $f(0)=0 , g(0)=2$ ,求
$$
I=\int_0^\pi\left[\frac{g(x)}{1+x}-\frac{f(x)}{(1+x)^2}\right] \mathrm{d} x .
$$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x) , g(x)$ 满足,
$$
f^{\prime}(x)=g(x) , g^{\prime}(x)=2 e^x-f(x),
$$
且 $f(0)=0 , g(0)=2$ ,求
$$
I=\int_0^\pi\left[\frac{g(x)}{1+x}-\frac{f(x)}{(1+x)^2}\right] \mathrm{d} x .
$$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见