• 试题 ID 15459


设函数 $f(x)$ 在 $(0,+\infty)$ 内连续, $f(1)=\frac{5}{2}$ ,且对所有 $x, t \in(0,+\infty)$ ,满足条件
$$
\int_1^{x t} f(u) \mathrm{d} u=t \int_1^x f(u) \mathrm{d} u+x \int_1^t f(u) \mathrm{d} u .
$$
求 $f(x)$ 的表达式.
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见