科数网
试题 ID 15521
【所属试卷】
2002年全国硕士研究生招生统一考试数学试题及详细参考解答(数三)
设随机变量 $X_1, X_2, \cdots, X_n$ 相互独立,
$$
S_n=X_1+X_2+\cdots+X_n
$$
则根据列维一林德柏格中心极限定理,当 $n$ 充分大时, $S_n$ 近似服从正态分布, 只要 $X_1, X_2, \cdots, X_n$
A
有相同的数学期望
B
有相同的方差
C
服从同一指数分布
D
服从同一离散型分布
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设随机变量 $X_1, X_2, \cdots, X_n$ 相互独立,
$$
S_n=X_1+X_2+\cdots+X_n
$$
则根据列维一林德柏格中心极限定理,当 $n$ 充分大时, $S_n$ 近似服从正态分布, 只要 $X_1, X_2, \cdots, X_n$
有相同的数学期望 有相同的方差 服从同一指数分布 服从同一离散型分布
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见