科数网
试题 ID 15564
【所属试卷】
2003年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)
设三阶方阵 $A, B$ 满足 $A^2 B-A-B=E$ ,其中 $E$ 为三阶单位矩阵,若 $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 1\end{array}\right)$ ,则 $|B|=$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设三阶方阵 $A, B$ 满足 $A^2 B-A-B=E$ ,其中 $E$ 为三阶单位矩阵,若 $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 1\end{array}\right)$ ,则 $|B|=$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见