科数网
试题 ID 15885
【所属试卷】
2007年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)
已知函数 $f(u)$ 具有二阶导数,且 $f^{\prime}(0)=1$ ,函数 $y=y(x)$ 由方程 $y-x e^{y-1}=1$ 所确定,设
$$
z=f(\ln y-\sin x)
$$
求 $\left.\frac{\mathrm{d} z}{\mathrm{~d} x}\right|_{x=0},\left.\frac{\mathrm{d}^2 z}{\mathrm{~d} x^2}\right|_{x=0}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知函数 $f(u)$ 具有二阶导数,且 $f^{\prime}(0)=1$ ,函数 $y=y(x)$ 由方程 $y-x e^{y-1}=1$ 所确定,设
$$
z=f(\ln y-\sin x)
$$
求 $\left.\frac{\mathrm{d} z}{\mathrm{~d} x}\right|_{x=0},\left.\frac{\mathrm{d}^2 z}{\mathrm{~d} x^2}\right|_{x=0}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见