科数网
试题 ID 16226
【所属试卷】
2010年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
已知曲线 $L$ 的方程为 $y=1-|x|(x \in[-1,1])$ ,起点是 $(-1,0)$ ,终点是 $(1,0)$ ,则曲线积分
$$
\int_L x y \mathrm{~d} x+x^2 \mathrm{~d} y=
$$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知曲线 $L$ 的方程为 $y=1-|x|(x \in[-1,1])$ ,起点是 $(-1,0)$ ,终点是 $(1,0)$ ,则曲线积分
$$
\int_L x y \mathrm{~d} x+x^2 \mathrm{~d} y=
$$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见