科数网
试题 ID 16296
【所属试卷】
1992年普通高等学校招生全国统一考试全国卷高考理科(含文科)数学真题及答案
已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad(a>b>0), A 、 B$ 是椭圆上的两点, 线段 $A B$ 的垂直平分线与 x 轴相交于点 $\mathrm{P}(\mathrm{x} 0,0)$. 证明 $-\frac{a^2-b^2}{a} < x_0 < \frac{a^2-b^2}{a}$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad(a>b>0), A 、 B$ 是椭圆上的两点, 线段 $A B$ 的垂直平分线与 x 轴相交于点 $\mathrm{P}(\mathrm{x} 0,0)$. 证明 $-\frac{a^2-b^2}{a} < x_0 < \frac{a^2-b^2}{a}$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见