科数网
试题 ID 16464
【所属试卷】
2023年《高等代数》期末试卷
设 $A=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125\end{array}\right), \beta=\left(\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right)$, 则 $A^{\prime} X=\beta$ 的解是
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $A=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125\end{array}\right), \beta=\left(\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right)$, 则 $A^{\prime} X=\beta$ 的解是
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见