科数网
试题 ID 17385
【所属试卷】
2019年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
设随机变量 $X$ 的概率密度为 $f(x)=\left\{\begin{array}{l}\frac{x}{2}, 0 < x < 2,\\ 0, \text { 其他, }\end{array}\right.$ $ F(x)$ 为$X$ 的分布函数, $E(X)$为$X$的数学期望, 则 $P\{F(X)>E(X)-1\}=$ $\qquad$ .
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设随机变量 $X$ 的概率密度为 $f(x)=\left\{\begin{array}{l}\frac{x}{2}, 0 < x < 2,\\ 0, \text { 其他, }\end{array}\right.$ $ F(x)$ 为$X$ 的分布函数, $E(X)$为$X$的数学期望, 则 $P\{F(X)>E(X)-1\}=$ $\qquad$ .
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见