科数网
试题 ID 17521
【所属试卷】
2020年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)
已知 $f(x)=\int_1^x e^{t^2} \mathrm{~d} t$.
(I) 证明: $\exists \xi \in(1,2)$ ,使得 $f(\xi)=(2-\xi) e^{\xi^2}$ ;
(ㅍ) 证明: $\exists \eta \in(1,2)$ ,使得 $f(2)=\ln 2 \cdot \eta \cdot e^{\eta^2}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知 $f(x)=\int_1^x e^{t^2} \mathrm{~d} t$.
(I) 证明: $\exists \xi \in(1,2)$ ,使得 $f(\xi)=(2-\xi) e^{\xi^2}$ ;
(ㅍ) 证明: $\exists \eta \in(1,2)$ ,使得 $f(2)=\ln 2 \cdot \eta \cdot e^{\eta^2}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见