设 $D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\} , f(x, y)$ 在 $D$ 上有连续的四阶偏导数,在 $D$ 的边界上取值为 0 . 证明:
$$
\left|\iint_D f(x, y) \mathrm{d} \sigma\right| \leq \frac{1}{144} \max _{(x, y) \in D}\left|\frac{\partial^4}{\partial x^2 \partial y^2} f(x, y)\right|
$$