• 试题 ID 18681


设 $f(x)=\left\{\begin{array}{ll}\frac{1}{1+\mathrm{e}^x}, & x < 0, \\ \frac{x}{\mathrm{e}^{-x^2}-2}, & x \geqslant 0,\end{array}\right.$ 则 $\int_0^2 f(x-1) \mathrm{d} x=$
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见