• 试题 ID 19863


设函数 $f(x, y)$ 连续, 则 $\int_1^2 d x \int_x^2 f(x, y) d y+\int_1^2 d y \int_y^{4-y} f(x, y) d x=$
A $\int_1^2 d x \int_1^{4-x} f(x, y) d y$.
B $\int_1^2 d x \int_x^{4-x} f(x, y) d y$.
C $\int_1^2 d y \int_1^{4-y} f(x, y) d x$.
D $\int_1^2 d y \int_y^2 f(x, y) d x$.
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见