科数网
试题 ID 20517
【所属试卷】
2025年普通高等学校《高等数学上》期末考试模拟试卷
设函数 $f(x)$ 在 $[a, b]$ 上连续, $\int_a^b f(x) d x=\int_a^b x f(x) d x=0$,求证: $\exists \xi, \eta \in(a, b),(\xi \neq \eta)$, 使得 $f(\xi)=0, f(\eta)=0$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)$ 在 $[a, b]$ 上连续, $\int_a^b f(x) d x=\int_a^b x f(x) d x=0$,求证: $\exists \xi, \eta \in(a, b),(\xi \neq \eta)$, 使得 $f(\xi)=0, f(\eta)=0$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见