科数网
试题 ID 20634
【所属试卷】
丁勇老师考研数学模拟试卷2023版(数学二)第一套
设连续函数 $f(x, y)$ 满足 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)-x-2 y-4}{x^2+y^2}=-1$, 则 $\lim _{h \rightarrow 0} \frac{f(2 h, 0)-f(0,-h)}{h}=($ )
A
-1
B
2
C
3
D
4
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设连续函数 $f(x, y)$ 满足 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)-x-2 y-4}{x^2+y^2}=-1$, 则 $\lim _{h \rightarrow 0} \frac{f(2 h, 0)-f(0,-h)}{h}=($ )
-1 2 3 4
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见