• 试题 ID 20787


设 $A$ 为三阶实对称矩阵,且满足 $A^2+A-2 E=0$ 已知向量

$$
\alpha_1=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \alpha_2=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$
是 $A$ 对应特征值 $\lambda=1$ 的特征向量, 求 $A^n$, 其中 $n$ 为自然数。
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见