设 $X_1, X_2, X_3$ 相互独立且 $E\left(X_i\right)=1, D\left(X_i\right)=1 \quad(i=1,2,3)$, 则对于任意给定的 $\varepsilon>0$ 由切比雪夫不等式可得
A
$P\left(\left|\sum_{i=1}^3 X_i-1\right| < \varepsilon\right) \geq 1-\varepsilon^{-2}$
B
$P\left(\left|\frac{1}{3} \sum_{i=1}^3 X_i-1\right| < \varepsilon\right) \geq 1-\varepsilon^{-2}$
C
$P\left(\left|\sum_{i=1}^3 X_i-3\right| < \varepsilon\right) \geq 1-\varepsilon^{-2}$
D
$P\left(\left|\sum_{i=1}^3 X_i-3\right| < \varepsilon\right) \geq 1-3 \varepsilon^{-2}$
E
F