设函数 $f(x, y)$ 连续, 则 $\int_{-2}^2 d x \int_{4-x^2}^4 f(x, y) d y=$
A
$\int_0^4\left[\int_{-2}^{-\sqrt{4-y}} f(x, y) d x+\int_{\sqrt{4-y}}^2 f(x, y) d x\right] d y$
B
$\int_0^4\left[\int_{-2}^{\sqrt{4 y}} f(x, y) d x+\int_{\sqrt{4-y}}^2 f(x, y) d x\right] d y$
C
$\int_0^4\left[\int_{-2}^{-\sqrt{4-y}} f(x, y) d x+\int_2^{\sqrt{4-y}} f(x, y) d x\right] d y$
D
$2 \int_0^4 d y\left[\int_{\sqrt{4-y}}^2 f(x, y)\right] d x$
E
F