科数网
试题 ID 22095
【所属试卷】
复旦大学《高等数学C下》2012期末考试试卷
验证函数 $y=x+\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}+\cdots(-\infty < x < +\infty)$ 满足方程 $y^{\prime \prime}+y^{\prime}=e^x$,并用此结果求 $\sum_0^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$ 的和函数。
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
验证函数 $y=x+\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}+\cdots(-\infty < x < +\infty)$ 满足方程 $y^{\prime \prime}+y^{\prime}=e^x$,并用此结果求 $\sum_0^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$ 的和函数。
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见