设 $D=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|, A_{i j}$ 为 $D$ 的 $(i, j)$ 元的代数余子式,则 $A_{31}+2 A_{32}+3 A_{33}=$
A
$\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 1 & 2 & 3\end{array}\right|$
B
$\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 1 & -2 & 3\end{array}\right|$
C
$\left|\begin{array}{lll}a_{11} & a_{12} & 1 \\ a_{21} & a_{22} & 2 \\ a_{31} & a_{32} & 3\end{array}\right|$
D
$\left|\begin{array}{llc}a_{11} & a_{12} & 1 \\ a_{21} & a_{22} & -2 \\ a_{31} & a_{32} & 3\end{array}\right|$
E
F