• 试题 ID 22764


设 $u(x, y, z)$ 是 $R ^3$ 上的连续函数,而且它在点 $M\left(x_0, y_0, z_0\right)$ 的某个邻域上有连续的二阶偏导数,记 $\Sigma$ 是以 $M\left(x_0, y_0, z_0\right)$ 为球心,$R$ 为半径的球面.令 $T(R)=\frac{1}{4 \pi R^2} \iint_{\Sigma} u(x, y, z) d S, R>0$ .证明:
(1) $\lim _{R \rightarrow 0^{+}} T(R)=u\left(x_0, y_0, z_0\right)$ .
(2)若 $\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}$ ,则

$$
\lim _{R \rightarrow 0^{+}} \frac{T(R)-u\left(x_0, y_0, z_0\right)}{R^2}=\frac{1}{6} \Delta u\left(x_0, y_0, z_0\right)
$$


其中 $\left.\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}\right)\right|_{\left(x_0, y_0, z_0\right)} \neq 0$ .
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见