已知矩阵 $A =\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{9}\end{array}\right), B =\left(\begin{array}{ccc}0 & \frac{3}{2} & 0 \\ \frac{3}{2} & 2 & 0 \\ 0 & 0 & -\frac{1}{9}\end{array}\right)$ ,向量 $x =\left(x_1, x_2, x_3\right)^{ T }$ ,试求一可逆线性
变换,将二次型 $f\left(x_1, x_2, x_3\right)= x ^{ T } A x$ 与 $g\left(x_1, x_2, x_3\right)= x ^{ T } B x$ 均化为标准形.