已知函数 $f(x)=\left\{\begin{array}{ll}\varphi(x), & x \geqslant 0, \\ \phi(x), & x < 0,\end{array}\right.$ 极限 $\lim _{x \rightarrow 0} \frac{f(x)-\varphi(0)}{x}=A$(常数),其中可导函数 $\varphi(x)$, $\phi(x)$ 满足 $\varphi^{\prime}(0) \leqslant 0, \phi^{\prime}(0) \geqslant 0$ ,下列说法
(1)$f(x)$ 在 $x=0$ 处连续;(2)$A=0$ ;(3) $\lim _{x \rightarrow 0} f^{\prime}(x)=0$ ;(4)$x=0$ 是 $f(x)$ 的极小值点.正确的个数为().