已知数列 $\left\{x_n\right\}$ 满足 $\lim _{n \rightarrow \infty}\left(\frac{x_n}{2 n-1}\right)^{n^2 \sin \frac{1}{n}}=A>0$ ,且极限 $\lim _{n \rightarrow \infty}\left(x_n-k n\right)=B$( $k$ 为常数)存在,则 $B=(\quad)$ .
A
$2 \ln A+1$
B
$2 \ln A-1$
C
$-A$
D
$2 \ln A$
E
F