科数网
试题 ID 24036
【所属试卷】
清华大学2024-2025学年微积分A1期末考试题及参考解答
设 $x \in(0,1)$ ,证明
(I)对任意正整数 $n$ ,都有 $\frac{n^x \cdot n!}{(x+1)(x+2) \cdots(x+n)} < 1$ ;
(II) $\lim _{n \rightarrow \infty} \frac{n^x \cdot n!}{(x+1)(x+2) \cdots(x+n)}$ 存在(有限).
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $x \in(0,1)$ ,证明
(I)对任意正整数 $n$ ,都有 $\frac{n^x \cdot n!}{(x+1)(x+2) \cdots(x+n)} < 1$ ;
(II) $\lim _{n \rightarrow \infty} \frac{n^x \cdot n!}{(x+1)(x+2) \cdots(x+n)}$ 存在(有限).
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见