在 $R ^3$ 中有两组基.
$$
\xi_1=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \xi_2=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \xi_3=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) .
$$
$$
\eta_1=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \eta_2=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \eta_3=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$
求:(1)由基 $\xi_1, \xi_2, \xi_3$ 到基 $\eta_1, \eta_2, \eta_3$ 的过渡矩阵;
(2)求 $\alpha =(1,3,0)^{ T }$ .在 $\xi_1, \xi_2, \xi_3$ 和 $\eta_1, \eta_2, \eta_3$ 下的坐标.