设变换 $\left\{\begin{array}{l}u=x-2 y \\ v=x+a y\end{array}\right.$ 可把方程 $6 \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial x \partial y}-\frac{\partial^2 z}{\partial y^2}=0$ 简化为 $\frac{\partial^2 z}{\partial u \partial v}=0$ ,其中 $z$ 具有二阶连续偏导数,求常数 $a$ .