科数网
试题 ID 27819
【所属试卷】
《高等数学》单元基础测评1/10- 函数、极限与连续
设 $\alpha_1=x(\cos \sqrt{x}-1), \alpha_2=\sqrt{x} \ln (1+\sqrt[3]{x}), \alpha_3=\sqrt[3]{x+1}-1$ .当 $x \rightarrow 0^{+}$时,以上 3 个无穷小量按照从低阶到高阶的排序是
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $\alpha_1=x(\cos \sqrt{x}-1), \alpha_2=\sqrt{x} \ln (1+\sqrt[3]{x}), \alpha_3=\sqrt[3]{x+1}-1$ .当 $x \rightarrow 0^{+}$时,以上 3 个无穷小量按照从低阶到高阶的排序是
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见