科数网
试题 ID 27882
【所属试卷】
《高等数学》单元基础测评2/10- 导数与微分
已知 $f(x)$ 在 $x=0$ 处可导,$f(0)=0$ ,则极限 $\lim _{x \rightarrow 0} \frac{f\left(x^3\right)-2 x^2 f(x)}{\ln \left(1+x^3\right)}=$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知 $f(x)$ 在 $x=0$ 处可导,$f(0)=0$ ,则极限 $\lim _{x \rightarrow 0} \frac{f\left(x^3\right)-2 x^2 f(x)}{\ln \left(1+x^3\right)}=$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见