科数网
试题 ID 27976
【所属试卷】
《高等数学》单元基础测评5/10- 一元定积分学
极限 $\lim _{n \rightarrow \infty} \frac{1}{n^2}\left(\sin \frac{1}{n}+2 \sin \frac{2}{n}+\cdots+n \sin \frac{n}{n}\right)=$ $\qquad$ .
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
极限 $\lim _{n \rightarrow \infty} \frac{1}{n^2}\left(\sin \frac{1}{n}+2 \sin \frac{2}{n}+\cdots+n \sin \frac{n}{n}\right)=$ $\qquad$ .
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见