科数网
试题 ID 27987
【所属试卷】
《高等数学》单元基础测评5/10- 一元定积分学
用第一类换元积分法(令 $t=\pi-x$ ),证明: $\int_0^\pi x f(\sin x) d x=\frac{\pi}{2} \int_0^\pi f(\sin x) d x$ ,并由此计算定积分 $\int_0^\pi \frac{x \sin x}{1+\cos ^2 x} d x$ .
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
用第一类换元积分法(令 $t=\pi-x$ ),证明: $\int_0^\pi x f(\sin x) d x=\frac{\pi}{2} \int_0^\pi f(\sin x) d x$ ,并由此计算定积分 $\int_0^\pi \frac{x \sin x}{1+\cos ^2 x} d x$ .
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见