科数网
试题 ID 30057
【所属试卷】
新文道 高等数学第三讲 中值定理与导数
设函数 $f(x)$ 在 $[a, b]$ 上连续,在 $[a, b]$ 上可导,且 $f(a)=f(b)=1$ ,证明:$\exists \xi, \eta \in(a, b)$ ,使得 $e^{\eta-\xi}\left[f^{\prime}(\eta)+f(\eta)\right]=1$ 成立.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)$ 在 $[a, b]$ 上连续,在 $[a, b]$ 上可导,且 $f(a)=f(b)=1$ ,证明:$\exists \xi, \eta \in(a, b)$ ,使得 $e^{\eta-\xi}\left[f^{\prime}(\eta)+f(\eta)\right]=1$ 成立.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见