设 $M , N$ 为 $m$ 阶和 $n$ 阶可逆矩阵, $A =\left(\begin{array}{cc} O & M \\ N & Q \end{array}\right)$ ,又 $P ^{-1} A P = B$ ,则 $B ^*=(\quad)$ 。
A
$P^{-1}\left(\begin{array}{cc}-N^* Q M^* & |M| N^* \\ |N| M^* & O\end{array}\right) P$
B
$\quad(-1)^{m n}\left(\begin{array}{cc}- N ^* Q M ^* & | M | N ^* \\ | N | M ^* & O \end{array}\right)$
C
$(-1)^{m n} P ^{-1}\left(\begin{array}{cc}- N ^* Q M \cdot & | M | N ^* \\ | N | M ^* & O \end{array}\right) P$
D
$P^{-1}\left(\begin{array}{cc}O & |M| N^* \\ |N| M^* & -N \cdot Q M^*\end{array}\right) P$
E
F