设 I: $\alpha _1, \alpha _2, \cdots, \alpha _m ;$ II : $\beta _1, \beta _2, \cdots, \beta _m$ ,令 $A =\left( \alpha _1, \alpha _2, \cdots, \alpha _m\right), B =\left( \beta _1, \beta _2, \cdots, \beta _m\right)$ ,若向量组 I 与向量组 II 等价,以下结论正确的是( ).
(1)方程组 $A x = 0$ 与 $B x = 0$ 同解;
(2)$r\left(\begin{array}{ll} A & B \\ O & A \end{array}\right)=2 r( A ) ;$
(3)方程组 $A ^{ T } x = 0$ 与 $B ^{ T } x = 0$ 同解;
(4)$r\left(\begin{array}{cc} A & B ^{ T } \\ O & A \end{array}\right)=2 r( A )$ .
A
(1)(2)
B
(1)(3)
C
(2)(3)
D
(2)(4)
E
F