科数网
试题 ID 31295
【所属试卷】
汤家凤考研数学模拟试卷(数二)2025版第三套
设曲线 $L: y=y(x)(x \geqslant 0)$ 为单调递增函数,$y(0)=1$ ,且对任意 $P(x, y) \in L$ ,曲线在该点的斜率与 $[0, x]$ 上曲边梯形的面积之差为 $2 e ^x+\frac{1}{2} x^2$ ,则 $y(x)=$ $\qquad$ .
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设曲线 $L: y=y(x)(x \geqslant 0)$ 为单调递增函数,$y(0)=1$ ,且对任意 $P(x, y) \in L$ ,曲线在该点的斜率与 $[0, x]$ 上曲边梯形的面积之差为 $2 e ^x+\frac{1}{2} x^2$ ,则 $y(x)=$ $\qquad$ .
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见