科数网
试题 ID 3273
【所属试卷】
2023贵州省遵义市高三上学期第三次月考(文科数学)
已知函数 $f(x)=x^2-x+x \ln x$.
(1) 设 $f(x)$ 的零点为 $m$, 求曲线 $y=f(x)$ 在点 $(m, 0)$ 处的切线方程;
(2) 若不等式 $a f(x) \leqslant\left(a^2+a-1\right) x^2-2 a x(a \neq 0)$ 对 $x \in\left[\frac{1}{\mathrm{e}},+\infty\right)$ 恒成立, 求 $a$ 的取值 范围.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知函数 $f(x)=x^2-x+x \ln x$.
(1) 设 $f(x)$ 的零点为 $m$, 求曲线 $y=f(x)$ 在点 $(m, 0)$ 处的切线方程;
(2) 若不等式 $a f(x) \leqslant\left(a^2+a-1\right) x^2-2 a x(a \neq 0)$ 对 $x \in\left[\frac{1}{\mathrm{e}},+\infty\right)$ 恒成立, 求 $a$ 的取值 范围.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见