设 $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ 是三个 $n$ 阶方阵, $\boldsymbol{A B}=\boldsymbol{O}, \boldsymbol{A}+\boldsymbol{B C}=\boldsymbol{E}_n$ .则有
A
$r(\boldsymbol{A})+r(\boldsymbol{B})=n$ .
B
$r(\boldsymbol{A})+r(\boldsymbol{B})>n$ .
C
$r(\boldsymbol{A})+r(\boldsymbol{B}) \leqslant 2 n$ .
D
$r(\boldsymbol{A})+r(\boldsymbol{B}) < n$ .
E
F