• 试题 ID 33611


设线性无关向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m$ 经 Schmidt 方法化成正交向量组 $\boldsymbol{\beta}_1$ , $\boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_m$ ,证明:两向量组的 Gram 矩阵的行列式都等于 $\left|\boldsymbol{\beta}_1\right|^2\left|\boldsymbol{\beta}_2\right|^2 \cdots\left|\boldsymbol{\beta}_m\right|^2$ ,即

$$
\left|\boldsymbol{G}\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m\right)\right|=\left|\boldsymbol{G}\left(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_m\right)\right|=\left|\boldsymbol{\beta}_1\right|^2\left|\boldsymbol{\beta}_2\right|^2 \cdots\left|\boldsymbol{\beta}_m\right|^2 .
$$
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见