设 $f$ 在 $[a, b]$ 上 Lebesgue 可积.证明:
$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{\pi}{2} \int_a^b f(x)|\sin n x| \mathrm{d} x=\int_a^b f(x) \mathrm{d} x \\
& \lim _{n \rightarrow+\infty} \frac{\pi}{2} \int_a^b f(x)|\cos n x| \mathrm{d} x=\int_a^b f(x) \mathrm{d} x
\end{aligned}
$$