设函数 $f(x)$ 在 $[0,+\infty)$ 上二阶可导,且 $f(0)=0, \lim _{x \rightarrow+\infty}\left[f(x)+x f^{\prime}(x)\right]=1$ .证明:
(1)存在 $\xi \in(0,+\infty)$ ,使得 $f(\xi)-f^{\prime}(\xi)=0$ ;
(2)存在 $\eta \in(0,+\infty)$ ,使得 $f(\eta)-2 f^{\prime}(\eta)+f^{\prime \prime}(\eta)=0$ .