设函数 $y_1(x), y_2(x), y_3(x)$ 分别为一阶非齐次线性微分方程 $y^{\prime}+p(x) y=q(x)$ 的三个不同的解,已知 $y_1(0)=a, y_2(0)=b, y_3(0)=c$ ,则下列说法中,正确的是
A
$\frac{y_3(x)-y_1(x)}{y_2(x)-y_1(x)}$ 是否为常数与 $p(x), q(x)$ 有关.
B
$\frac{y_3(x)-y_1(x)}{y_2(x)-y_1(x)}$ 是否为常数与 $a, b, c$ 的取值有关.
C
若 $a < b < c$ ,则 $\frac{y_3(x)-y_1(x)}{y_2(x)-y_1(x)}$ 必为大于 0 的常数.
D
若 $a < b < c$ ,则 $\frac{y_3(x)-y_1(x)}{y_2(x)-y_1(x)}$ 必为小于 0 的常数.
E
F