设矩阵 $\boldsymbol{A}=\left(\begin{array}{lll}a & b & b \\ b & a & b \\ b & b & a\end{array}\right), \boldsymbol{B}=\left(\begin{array}{lll}b & b & a \\ b & a & b \\ a & b & b\end{array}\right), \boldsymbol{C}=\left(\begin{array}{lll}b & a & b \\ a & b & b \\ b & b & a\end{array}\right), \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ 均可逆,则
A
$\boldsymbol{A}, \boldsymbol{B}$ 不相似但合同.
B
$\boldsymbol{B}, \boldsymbol{C}$ 既相似又合同.
C
$\boldsymbol{A}, \boldsymbol{C}$ 不相似但合同.
D
$\boldsymbol{B}, \boldsymbol{C}$ 不相似但合同.
E
F